7月26日,第19届中美碳联盟年会在南京信息工程大学顺利召开。年会主题围绕“气候与环境变化下的陆地碳水循环”,充分交流在生态系统协同观测、数据融合、模型模拟、圈层交叉和服务功能等方向的重要成果。
On July 26th, the 19th US-China Carbon Consortium Annual Conference was successfully held at Nanjing University of Information Science and Technology. The conference focused on the theme "Terrestrial Carbon-Water Cycle under Climate and Environmental Changes" and facilitated extensive exchanges on significant achievements in ecosystem collaborative observation, data fusion, model simulation, cross-disciplinary interactions, and service functionalities.
宁波海尔欣光电科技有限公司受邀参加专题研讨。7月26日下午,海尔欣总经理王胤博士针对公司品牌“昕甬智测”HT8800系列便携式高精度温室气体分析仪,分享题为A portable, high-precision optical analyzer based on hybrid laser absorption cell for simultaneous measurements of N2O, CH4 and CO2 fluxes from soils(基于混合激光吸收池的便携式高精度光学分析仪,可同时测量土壤中的N2O、CH4和CO2通量)的案例应用与相关成果。该项目由清华大学深圳国际研究生院、宁波海尔欣光电科技有限公司、宁波诺丁汉大学联合研究。相关成果也在EGU2023中进行口头论述。
HealthyPhoton Technology Co., Ltd. was invited to participate in a special seminar. On the afternoon of June 14th, Dr. Wang Yin, the General Manager of HealthyPhoton, presented a case study and relevant achievements on HT8800 series all-in-one multi-component portable GHG analyzer. The presentation is titled "A portable, high-precision optical analyzer based on hybrid laser absorption cell for simultaneous measurements of N2O, CH4, and CO2 fluxes from soils." This project is a joint research effort by Tsinghua University -SIGS, HealthyPhoton Technology Co., Ltd., and the University of Nottingham Ningbo China. The related achievements will also be orally presented at EGU2023.
同时,海尔欣此次在现场展示了HT8800系列高精度温室气体分析仪(点击查看产品)和HT8700大气氨激光开路分析仪(点击查看产品),受到了到场专家学者的一致认可。海尔欣·昕甬智测将坚定以技术创新为动力,光谱技术助力零碳地球——实现更及时、更精确的科学测量,为国家“碳中和”大目标贡献力量。
At the same time, HealthyPhoton showcased the HT8800 series all-in-one multi-component portable GHG analyzer and the HT8700 atmospheric ammonia open-path analyzer during the event. The demonstrations received unanimous recognition and praise from the attending experts and scholars. HealthyPhoton will firmly rely on technological innovation, utilizing spectral technology to contribute to a carbon-neutral planet—achieving more timely and accurate scientific measurements and contributing to the national goal of "carbon neutrality."